Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.266
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615365

RESUMO

BACKGROUND: Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE: In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS: Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS: Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS: Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.


Assuntos
Quercetina , Receptores de N-Metil-D-Aspartato , Humanos , Animais , Ratos , Quercetina/farmacologia , Quercetina/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
Learn Mem ; 31(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627067

RESUMO

Exposure-based therapy is effective in treating anxiety, but a return of fear in the form of relapse is common. Exposure is based on the extinction of Pavlovian fear conditioning. Both animal and human studies point to increased arousal during immediate compared to delayed extinction (>+24 h), which presumably impairs extinction learning and increases the subsequent return of fear. Impaired extinction learning under arousal might interfere with psychotherapeutic interventions. The aim of the present study was to investigate whether arousal before extinction differs between extinction groups and whether arousal before extinction predicts the return of fear in a later (retention) test. As a highlight, both the time between fear acquisition and extinction (immediate vs. delayed) and the time between extinction and test (early vs. late test) were systematically varied. We performed follow-up analyses on data from 103 young, healthy participants to test the above hypotheses. Subjective arousal ratings and physiological arousal measures of sympathetic and hypothalamic pituitary adrenal axis activation (tonic skin conductance and salivary cortisol) were collected. Increased pre-extinction arousal in the immediate extinction group was only confirmed for subjective arousal. In linear regression analyses, none of the arousal measures predicted a significant return of fear in the different experimental groups. Only when we aggregated across the two test groups, tonic skin conductance at the onset of extinction predicted the return of fear in skin conductance responses. The overall results provide little evidence that pre-extinction arousal affects subsequent extinction learning and memory. In terms of clinical relevance, there is no clear evidence that exposure could be improved by reducing subjective or physiological arousal.


Assuntos
Resposta Galvânica da Pele , Sistema Hipotálamo-Hipofisário , Animais , Humanos , Extinção Psicológica/fisiologia , Sistema Hipófise-Suprarrenal , Medo/fisiologia , Nível de Alerta/fisiologia
3.
Cleve Clin J Med ; 91(4): 245-255, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561211

RESUMO

Diseases of the adrenal glands can lead to primary adrenal insufficiency, and suppression of the hypothalamic-pituitary-adrenal axis can cause secondary adrenal insufficiency (adrenal suppression). The most common cause of adrenal suppression is exogenous steroids, a condition recently termed glucocorticoid-induced adrenal insufficiency (GIAI). Similarly, weaning from high doses of glucocorticoids or giving insufficient glucocorticoid replacement after curative surgery for endogenous hypercortisolism (Cushing syndrome) can lead to glucocorticoid withdrawal syndrome, which overlaps with GIAI.


Assuntos
Insuficiência Adrenal , Síndrome de Abstinência a Substâncias , Humanos , Glucocorticoides/efeitos adversos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Insuficiência Adrenal/induzido quimicamente
4.
Addict Biol ; 29(4): e13392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564607

RESUMO

Suicide attempts (SA) are prevalent in substance use disorders (SUD). Epigenetic mechanisms may play a pivotal role in the molecular mechanisms of environmental effects eliciting suicidal behaviour in this population. Hypothalamic-pituitary-adrenal axis (HPA), oxytocin and neurotrophin pathways have been consistently involved in SA, yet , their interplay with childhood adversity remains unclear, particularly in SUD. In 24 outpatients with SUDs, we examined the relation between three parental dysfunctional styles and history of SA with methylation of 32 genes from these pathways, eventually analysing 823 methylation sites. Extensive phenotypic characterization was obtained using a semi-structured interview. Parental style was patient-reported using the Measure of Parental Style (MOPS) questionnaire, analysed with and without imputation of missing items. Linear regressions were performed to adjust for possible confounders, followed by multiple testing correction. We describe both differentially methylated probes (DMPs) and regions (DMRs) for each set of analyses (with and without imputation of MOPS items). Without imputation, five DMRs in OXTR, CRH and NTF3 significantly interacted with MOPS father abuse to increase the risk for lifetime SA, thus covering the three pathways. After imputation of missing MOPS items, two other DMPs from FKBP5 and SOCS3 significantly interacted with each of the three father styles to increase the risk for SA. Although our findings must be interpreted with caution due to small sample size, they suggest implications of stress reactivity genes in the suicidal risk of SUD patients and highlight the significance of father dysfunction as a potential marker of childhood adversity in SUD patients.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , Tentativa de Suicídio , Humanos , Criança , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Pais , Transtornos Relacionados ao Uso de Substâncias/genética , Epigênese Genética
5.
BMC Psychiatry ; 24(1): 269, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600448

RESUMO

OBJECTIVE: The purpose of this study was to investigate the effects of escitalopram on the peripheral expression of hypothalamic-pituitary-adrenal (HPA) axis-related genes (FKBP51, HSP90, NR3C1 and POMC) and HPA-axis hormones in patients with panic disorder (PD). METHODS: Seventy-seven patients with PD were treated with escitalopram for 12 weeks. All participants were assessed for the severity of panic symptoms using the Panic Disorder Severity Scale (PDSS). The expression of HPA-axis genes was measured using real-time quantitative fluorescent PCR, and ACTH and cortisol levels were measured using chemiluminescence at baseline and after 12 weeks of treatment. RESULTS: At baseline, patients with PD had elevated levels of ACTH and cortisol, and FKBP51 expression in comparison to healthy controls (all p < 0.01). Correlation analysis revealed that FKBP51 expression levels were significantly positively related to cortisol levels and the severity of PD (all p < 0.01). Furthermore, baseline ACTH and cortisol levels, and FKBP51 expression levels were significantly reduced after 12 weeks of treatment, and the change in the PDSS score from baseline to post-treatment was significantly and positively related to the change in cortisol (p < 0.01). CONCLUSIONS: The results suggest that PD may be associated with elevated levels of ACTH and cortisol, and FKBP51 expression, and that all three biomarkers are substantially decreased in patients who have received escitalopram treatment.


Assuntos
Transtorno de Pânico , Humanos , Transtorno de Pânico/tratamento farmacológico , Transtorno de Pânico/genética , Transtorno de Pânico/diagnóstico , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Hidrocortisona/metabolismo , Escitalopram , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , RNA Mensageiro
6.
Sci Rep ; 14(1): 7759, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565594

RESUMO

The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.


Assuntos
Sistema Hipotálamo-Hipofisário , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/genética , Larva/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Adaptação Psicológica
7.
PLoS One ; 19(4): e0298553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568926

RESUMO

The pervasive use of social media has raised concerns about its potential detrimental effects on physical and mental health. Others have demonstrated a relationship between social media use and anxiety, depression, and psychosocial stress. In light of these studies, we examined physiological indicators of stress (heart rate to measure autonomic nervous system activation and cortisol to assess activity of the hypothalamic-pituitary-adrenal axis) associated with social media use and investigated possible moderating influences of sex, age, and psychological parameters. We collected physiological data from 59 subjects ranging in age from 13 to 55 across two cell phone treatments: social media use and a pre-selected YouTube playlist. Heart rate was measured using arm-band heart rate monitors before and during cell phone treatments, and saliva was collected for later cortisol analysis (by enzyme immunoassay) before and after each of the two cell phone treatments. To disentangle the effects of cell phone treatment from order of treatment, we used a crossover design in which participants were randomized to treatment order. Our study uncovered a significant period effect suggesting that both heart rate and cortisol decreased over the duration of our experiment, irrespective of the type of cell phone activity or the order of treatments. There was no indication that age, sex, habits of social media use, or psychometric parameters moderated the physiological response to cell phone activities. Our data suggest that 20-minute bouts of social media use or YouTube viewing do not elicit a physiological stress response.


Assuntos
Uso do Telefone Celular , Mídias Sociais , Humanos , Frequência Cardíaca/fisiologia , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Saliva/metabolismo , Estresse Fisiológico , Estresse Psicológico/psicologia , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
8.
Front Endocrinol (Lausanne) ; 15: 1282564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638132

RESUMO

Objective: We compared hair cortisol (HC) with classic tests of the hypothalamic-pituitary-adrenal (HPA) axis in chronic kidney disease (CKD) and assessed its association with kidney and cardiometabolic status. Design and methods: A cross-sectional study of 48 patients with CKD stages I-IV, matched by age, sex, and BMI with 24 healthy controls (CTR) was performed. Metabolic comorbidities, body composition, and HPA axis function were studied. Results: A total of 72 subjects (age 52.9 ± 12.2 years, 50% women, BMI 26.2 ± 4.1 kg/m2) were included. Metabolic syndrome features (hypertension, dyslipidaemia, glucose, HOMA-IR, triglycerides, waist circumference) and 24-h urinary proteins increased progressively with worsening kidney function (p < 0.05 for all). Reduced cortisol suppression after 1-mg dexamethasone suppression (DST) (p < 0.001), a higher noon (12:00 h pm) salivary cortisol (p = 0.042), and salivary cortisol AUC (p = 0.008) were seen in CKD. 24-h urinary-free cortisol (24-h UFC) decreased in CKD stages III-IV compared with I-II (p < 0.001); higher midnight salivary cortisol (p = 0.015) and lower suppressibility after 1-mg DST were observed with declining kidney function (p < 0.001). Cortisol-after-DST cortisol was >2 mcg/dL in 23% of CKD patients (12.5% in stage III and 56.3% in stage IV); 45% of them had cortisol >2 mcg/dL after low-dose 2-day DST, all in stage IV (p < 0.001 for all). Cortisol-after-DST was lineally inversely correlated with eGFR (p < 0.001). Cortisol-after-DST (OR 14.9, 95% CI 1.7-103, p = 0.015) and glucose (OR 1.3, 95% CI 1.1-1.5, p = 0.003) were independently associated with eGFR <30 mL/min/m2). HC was independently correlated with visceral adipose tissue (VAT) (p = 0.016). Cortisol-after-DST (p = 0.032) and VAT (p < 0.001) were independently correlated with BMI. Conclusion: Cortisol-after-DST and salivary cortisol rhythm present progressive alterations in CKD patients. Changes in cortisol excretion and HPA dynamics in CKD are not accompanied by significant changes in long-term exposure to cortisol evaluated by HC. The clinical significance and pathophysiological mechanisms explaining the associations between HPA parameters, body composition, and kidney damage warrant further study.


Assuntos
Hidrocortisona , Insuficiência Renal Crônica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Estudos Transversais , Sistema Hipófise-Suprarrenal/metabolismo , Glucose
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621962

RESUMO

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Medicina Tradicional Chinesa , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Sistema Nervoso Central , Isquemia Encefálica/terapia , Sistema Imunitário , Inflamação
10.
Basic Clin Pharmacol Toxicol ; 134(5): 563-573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459754

RESUMO

Dementia is an umbrella term for a broad group of age-associated neurodegenerative diseases. It is estimated that dementia affects 50 million people worldwide and that Alzheimer's disease (AD) is responsible for up to 75% of cases. Small extracellular senile plaques composed of filamentous aggregates of amyloid ß (Aß) protein tend to bind to neuronal receptors, affecting cholinergic, serotonergic, dopaminergic and noradrenergic neurotransmission, leading to neuroinflammation, among other pathophysiologic processes and subsequent neuronal death, followed by dementia. The amyloid cascade hypothesis points to a pathological process in the cleavage of the amyloid precursor protein (APP), resulting in pathological Aß. There is a close relationship between the pathologies that lead to dementia and depression. It is estimated that depression is prevalent in up to 90% of individuals diagnosed with Parkinson's disease, with varying severity, and in 20 to 30% of cases of Alzheimer's disease. The hypothalamic pituitary adrenal (HPA) axis is the great intermediary between the pathophysiological mechanisms in neurodegenerative diseases and depression. This review discusses the role of Aß protein in the pathophysiological mechanisms of dementia and depression, considering the HPA axis, neuroinflammation, oxidative stress, signalling pathways and neurotransmission.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Depressão , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Doenças Neuroinflamatórias , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia
11.
ACS Chem Neurosci ; 15(7): 1560-1569, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507566

RESUMO

Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.


Assuntos
Fluoxetina , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Ratos , Animais , Masculino , Humanos , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Sistema Hipotálamo-Hipofisário , Receptores de Glucocorticoides , Sistema Hipófise-Suprarrenal , Córtex Pré-Frontal , Estresse Psicológico , Corticosterona/farmacologia
12.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449331

RESUMO

Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11ß-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.


Assuntos
Glucocorticoides , Mães , Animais , Feminino , Masculino , Gravidez , Ratos , Feto , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Placenta
13.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473937

RESUMO

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Assuntos
Doenças Fetais , Efeitos Tardios da Exposição Pré-Natal , Testes Psicológicos , Autorrelato , Humanos , Gravidez , Feminino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Estresse Psicológico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Desenvolvimento Fetal , Biomarcadores/metabolismo
14.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467724

RESUMO

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Feminino , Masculino , Animais , Camundongos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Transcriptoma , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corticosterona
15.
Dev Psychobiol ; 66(3): e22479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470450

RESUMO

Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.


Assuntos
Experiências Adversas da Infância , Humanos , Lactente , Feminino , Camundongos , Ratos , Animais , Sistema Hipotálamo-Hipofisário , Mães , Sistema Hipófise-Suprarrenal , Epigênese Genética , Mamíferos
16.
Nat Commun ; 15(1): 2426, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499548

RESUMO

The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Humanos , Hipotálamo/diagnóstico por imagem , Encéfalo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
17.
Sci Rep ; 14(1): 6837, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514744

RESUMO

Early-life adversity (ELA) is related to profound dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, reflected in both, blunted or exaggerated cortisol stress responses in adulthood. Emotion regulation strategies such as cognitive reappraisal might contribute to this inconsistent finding. Here, we investigate an interaction of early-life maternal care (MC), where low MC represents a form of ELA, and instructed emotion regulation on cortisol responses to acute stress. Ninety-three healthy young women were assigned to a low (n = 33) or high (n = 60) MC group, based on self-reported early-life MC. In the laboratory, participants received regulation instructions, asking to cognitively reappraise (reappraisal group, n = 45) or to focus on senses (control group, n = 48) during subsequent stress exposure, induced by the Trier Social Stress Test. Salivary cortisol and subjective stress levels were measured repeatedly throughout the experiment. Multilevel model analyses confirmed a MC by emotion regulation interaction effect on cortisol trajectories, while controlling for hormonal status. Individuals with low MC in the control compared with the reappraisal group showed increased cortisol responses; individuals with high MC did not differ. These results highlight the significance of emotion regulation for HPA axis stress regulation following ELA exposure. They provide methodological and health implications, indicating emotion regulation as a promising target of treatment interventions for individuals with a history of ELA.


Assuntos
Sistema Hipotálamo-Hipofisário , Estresse Psicológico , Humanos , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Estresse Psicológico/psicologia , Hidrocortisona/análise , Sistema Hipófise-Suprarrenal/fisiologia , Cognição/fisiologia , Saliva/química
18.
J Pharmacol Sci ; 154(4): 236-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485341

RESUMO

Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.


Assuntos
Ácido Glutâmico , 60610 , Feminino , Camundongos , Animais , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipocampo/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Estrogênios , Plasticidade Neuronal , Ácido gama-Aminobutírico/metabolismo
19.
Curr Psychiatry Rep ; 26(3): 78-103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470559

RESUMO

PURPOSE OF REVIEW: Review the current evidence on biomarkers for bipolar disorder in the older adults. We conducted a systematic search of PubMed MEDLINE, PsycINFO, and Web of Science databases using the MeSH search terms "Biomarkers", "Bipolar Disorder", "Aged" and and "Aged, 80 and over". Studies were included if they met the following criteria: (1) the mean age of the study population was 50 years old or older, (2) the study included patients with bipolar disorder, and (3) the study examined one type of biomarkers or more including genetic, neuroimaging, and biochemical biomarkers. Reviews, case reports, studies not in English and studies for which no full text was available were excluded. A total of 26 papers were included in the final analysis. RECENT FINDINGS: Genomic markers of bipolar disorder in older adults highlighted the implication of serotonin metabolism, while the expression of genes involved in angiogenesis was dysregulated. Peripheral blood markers were mainly related with low grade inflammation, axonal damage, endothelial dysfunction, and the dysregulation of the HPA axis. Neuroanatomical markers reflected a dysfunction of the frontal cortex, a loss of neurones in the anterior cingulate cortex and a reduction of the hippocampal volume (in patients older than 50 years old). While not necessarily limited to older adults, some of them may be useful for differential diagnosis (neurofilaments), disease staging (homocysteine, BDNF) and the monitoring of treatment outcomes (matrix metalloproteinases). Our review provides a comprehensive overview of the current evidence on biomarkers for bipolar disorder in the older adults. The identification of biomarkers may aid in the diagnosis, treatment selection, and monitoring of bipolar disorder in older adults, ultimately leading to improved outcomes for this population. Further research is needed to validate and further explore the potential clinical utility of biomarkers in this population.


Assuntos
Transtorno Bipolar , Idoso , Humanos , Pessoa de Meia-Idade , Biomarcadores , Transtorno Bipolar/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Inflamação , Sistema Hipófise-Suprarrenal , Idoso de 80 Anos ou mais
20.
PeerJ ; 12: e17119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525273

RESUMO

Background: Studies have shown that chronic exposure to job stress may increase the risk of sleep disturbances and that hypothalamic‒pituitary‒adrenal (HPA) axis gene polymorphisms may play an important role in the psychopathologic mechanisms of sleep disturbances. However, the interactions among job stress, gene polymorphisms and sleep disturbances have not been examined from the perspective of the HPA axis. This study aimed to know whether job stress is a risk factor for sleep disturbances and to further explore the effect of the HPA axis gene × job stress interaction on sleep disturbances among railway workers. Methods: In this cross-sectional study, 671 participants (363 males and 308 females) from the China Railway Fuzhou Branch were included. Sleep disturbances were evaluated with the Pittsburgh Sleep Quality Index (PSQI), and job stress was measured with the Effort-Reward Imbalance scale (ERI). Generalized multivariate dimensionality reduction (GMDR) models were used to assess gene‒environment interactions. Results: We found a significant positive correlation between job stress and sleep disturbances (P < 0.01). The FKBP5 rs1360780-T and rs4713916-A alleles and the CRHR1 rs110402-G allele were associated with increased sleep disturbance risk, with adjusted ORs (95% CIs) of 1.75 [1.38-2.22], 1.68 [1.30-2.18] and 1.43 [1.09-1.87], respectively. However, the FKBP5 rs9470080-T allele was a protective factor against sleep disturbances, with an OR (95% CI) of 0.65 [0.51-0.83]. GMDR analysis indicated that under job stress, individuals with the FKBP5 rs1368780-CT, rs4713916-GG, and rs9470080-CT genotypes and the CRHR1 rs110402-AA genotype had the greatest risk of sleep disturbances. Conclusions: Individuals carrying risk alleles who experience job stress may be at increased risk of sleep disturbances. These findings may provide new insights into stress-related sleep disturbances in occupational populations.


Assuntos
Interação Gene-Ambiente , Estresse Ocupacional , Masculino , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Estudos Transversais , Sistema Hipófise-Suprarrenal , Polimorfismo Genético/genética , Estresse Ocupacional/epidemiologia , Sono/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...